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Introduction
The chromatographic data is usually modeled considering one analyte at a time. It has certain limitations as no information is shared between analytes and consequently the model
predictions poorly generalize to out-of-sample analytes. The methodology of full Bayesian inference with Markov Chain Monte Carlo sampling allows i) to incorporate prior knowledge about
the likely values of model parameters, ii) to consider the between analyte variability and correlation between model parameters, iii) to explain the between analyte variability by available
predictors, and iv) to share information across analytes. The latter is especially valuable when there is limited information in the data about certain model parameters. The results are
obtained in the form of posterior probability distribution, that quantifies uncertainty about the model parameters and predictions. The posterior probability is also directly relevant for decision
making.

Methodology

Raw Data

The dataset consists of isocratic reversed-phase high-performance liquid chromatogra-
phy measurements of 1024 analytes using Agilent Eclipse Plus C18 stationary phase
with 3.5 µm particles.
Data is publicly available, http://www.retentionprediction.org/hplc/database/ .

The statistical analysis was carried out in the Stan program coupled with R. Both programs are
open-source.

Nonlinear Neue’s model [1]

log k = log kw −
S1·ϕ

1+S2·ϕ

S1 = (log kw − log ka ) ·
(

1 + 10log S2A
)

, S2 = 10log S2A

Hierarchical model

log kObs = f (Ri ,ϕi ,j ) + σ
Ri = h(θ, log Pi ) + ηR,i

Ri - individual (analytes-specific) parameters
σ - intra-analyte (residua) variability
θ - individual typical values
ηR,i - inter-analyte variability

Bayesian inference

P
(
θ| log ki ,j ,ϕi ,j

)
∝ P

(
log ki ,j |θ,ϕi ,j

)
· P(θ)

Stan code of Neue’s model

functions{
real hplcmodel(real fi, real logkw, real logka,
real logSA){

real logk;
real S1;
S1 = (logkw - logka)*(1+10^logS2A);
logk = logkw - S1 * fi / (1 + 10^logS2A * fi);
return logk;

}
}

Initial model

log kObs ∼ N
(
logki ,j ,σ

)
log ki ,j = hplcmodel(ϕi ,j , log kw ,i , log ka,i , log S2A,i ) log kw ,i

log ka,i
log S2A,i

 = MST

 θlogkw ,i + β1 · log Pi ,
ν, θlogka,i + β2 · log Pi , Ω

θlogS2A,i
,



Result
1. Our initial analysis indicated that the analytes form two clusters with

different retention characteristics.

2. To describe this phenomenon was used a mixture model that assumes
two data generating processes, each with their own set of parameters.

Improved model

log kObs ∼ N
(

logki ,j , σ
)

log ki ,j = hplcmodel(ϕi ,j , log kw ,i , log ka,i , log S2A,i )

 log kw ,i
log ka,i

log S2A,i

 = Mixture

(
λ, MVN


 log kw1,i

log ka1,i
log S2A,i

 ∣∣∣∣∣

θlogkw1,i

+ β1 · log Pi ,

θlogka1,i
+ β3 · log Pi , Ω1

θlogS2A,i
+ β5 · log Pi ,


 ,

MVN


 log kw2,i

log ka2,i
log S2A,i

 ∣∣∣∣∣

θlogkw2,i

+ β2 · log Pi ,

θlogka2,i
+ β4 · log Pi , Ω2

θlogS2A,i
+ β5 · log Pi ,



)

.

3. Summary of marginal posterior distributions of
model parameters

Ω =

ω1 0 0
0 ω2 0
0 0 ω3

 · [ ρ1,1 ρ1,2 ρ1,3
ρ2,1 ρ2,2 ρ2,3
ρ3,1 ρ3,2 ρ3,3

]
·

ω1 0 0
0 ω2 0
0 0 ω3



4. Visual predictive check

A

B
A. Predictions correspond to the future observations of the same analyte,
B. Predictions correspond to the future observations of a new analyte.

Conclusion

A B C

The proposed model gives insight into
behavior of analytes in the chromatographic
column and can be used to make predic-
tions for structurally diverse set of analytes.

A. Prediction of future observations of the same analyte.
B. Prediction of future observations of the same analyte using
reduced data.
C. Prediction of future observations of a new analyte.
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